Paper ID: 2402.00036

Kronecker Product Feature Fusion for Convolutional Neural Network in Remote Sensing Scene Classification

Yinzhu Cheng

Remote Sensing Scene Classification is a challenging and valuable research topic, in which Convolutional Neural Network (CNN) has played a crucial role. CNN can extract hierarchical convolutional features from remote sensing imagery, and Feature Fusion of different layers can enhance CNN's performance. Two successful Feature Fusion methods, Add and Concat, are employed in certain state-of-the-art CNN algorithms. In this paper, we propose a novel Feature Fusion algorithm, which unifies the aforementioned methods using the Kronecker Product (KPFF), and we discuss the Backpropagation procedure associated with this algorithm. To validate the efficacy of the proposed method, a series of experiments are designed and conducted. The results demonstrate its effectiveness of enhancing CNN's accuracy in Remote sensing scene classification.

Submitted: Jan 8, 2024