Paper ID: 2402.02619
Increasing Trust in Language Models through the Reuse of Verified Circuits
Philip Quirke, Clement Neo, Fazl Barez
Language Models (LMs) are increasingly used for a wide range of prediction tasks, but their training can often neglect rare edge cases, reducing their reliability. Here, we define a stringent standard of trustworthiness whereby the task algorithm and circuit implementation must be verified, accounting for edge cases, with no known failure modes. We show that a model can be trained to meet this standard if built using mathematically and logically specified frameworks. In this paper, we fully verify an auto-regressive transformer model for n-digit integer addition. To exhibit the reusability of verified modules, we insert the trained integer addition model into a larger untrained model and train the combined model to perform both addition and subtraction. We find extensive reuse of the addition circuits for both tasks, easing verification of the more complex subtractor model. We discuss how inserting verified task modules into LMs can leverage model reuse to improve verifiability and trustworthiness of language models built using them. The reuse of verified circuits reduces the effort to verify more complex composite models which we believe to be a significant step towards safety of language models.
Submitted: Feb 4, 2024