Paper ID: 2402.08616

Adjustment Identification Distance: A gadjid for Causal Structure Learning

Leonard Henckel, Theo Würtzen, Sebastian Weichwald

Evaluating graphs learned by causal discovery algorithms is difficult: The number of edges that differ between two graphs does not reflect how the graphs differ with respect to the identifying formulas they suggest for causal effects. We introduce a framework for developing causal distances between graphs which includes the structural intervention distance for directed acyclic graphs as a special case. We use this framework to develop improved adjustment-based distances as well as extensions to completed partially directed acyclic graphs and causal orders. We develop polynomial-time reachability algorithms to compute the distances efficiently. In our package gadjid (open source at https://github.com/CausalDisco/gadjid), we provide implementations of our distances; they are orders of magnitude faster than the structural intervention distance and thereby provide a success metric for causal discovery that scales to graph sizes that were previously prohibitive.

Submitted: Feb 13, 2024