Paper ID: 2402.13582
Mastering the Game of Guandan with Deep Reinforcement Learning and Behavior Regulating
Yifan Yanggong, Hao Pan, Lei Wang
Games are a simplified model of reality and often serve as a favored platform for Artificial Intelligence (AI) research. Much of the research is concerned with game-playing agents and their decision making processes. The game of Guandan (literally, "throwing eggs") is a challenging game where even professional human players struggle to make the right decision at times. In this paper we propose a framework named GuanZero for AI agents to master this game using Monte-Carlo methods and deep neural networks. The main contribution of this paper is about regulating agents' behavior through a carefully designed neural network encoding scheme. We then demonstrate the effectiveness of the proposed framework by comparing it with state-of-the-art approaches.
Submitted: Feb 21, 2024