Paper ID: 2402.15202
Fine-Grained Detoxification via Instance-Level Prefixes for Large Language Models
Xin Yi, Linlin Wang, Xiaoling Wang, Liang He
Impressive results have been achieved in natural language processing (NLP) tasks through the training of large language models (LLMs). However, these models occasionally produce toxic content such as insults, threats, and profanity in response to certain prompts, thereby constraining their practical utility. To tackle this issue, various finetuning-based and decoding-based approaches have been utilized to mitigate toxicity. However, these methods typically necessitate additional costs such as high-quality training data or auxiliary models. In this paper, we propose fine-grained detoxification via instance-level prefixes (FGDILP) to mitigate toxic text without additional cost. Specifically, FGDILP contrasts the contextualized representation in attention space using a positive prefix-prepended prompt against multiple negative prefix-prepended prompts at the instance level. This allows for constructing fine-grained subtoxicity vectors, which enables collaborative detoxification by fusing them to correct the normal generation process when provided with a raw prompt. We validate that FGDILP enables controlled text generation with regard to toxicity at both the utterance and context levels. Our method surpasses prompt-based baselines in detoxification, although at a slight cost to generation fluency and diversity.
Submitted: Feb 23, 2024