Paper ID: 2402.15506

AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang, Yihao Feng, Zuxin Liu, Tulika Awalgaonkar, Juan Carlos Niebles, Silvio Savarese, Shelby Heinecke, Huan Wang, Caiming Xiong

Autonomous agents powered by large language models (LLMs) have garnered significant research attention. However, fully harnessing the potential of LLMs for agent-based tasks presents inherent challenges due to the heterogeneous nature of diverse data sources featuring multi-turn trajectories. In this paper, we introduce \textbf{AgentOhana} as a comprehensive solution to address these challenges. \textit{AgentOhana} aggregates agent trajectories from distinct environments, spanning a wide array of scenarios. It meticulously standardizes and unifies these trajectories into a consistent format, streamlining the creation of a generic data loader optimized for agent training. Leveraging the data unification, our training pipeline maintains equilibrium across different data sources and preserves independent randomness across devices during dataset partitioning and model training. Additionally, we present \textbf{xLAM-v0.1}, a large action model tailored for AI agents, which demonstrates exceptional performance across various benchmarks. Begin the exploration at \url{https://github.com/SalesforceAIResearch/xLAM}.

Submitted: Feb 23, 2024