Paper ID: 2403.04453
Vlearn: Off-Policy Learning with Efficient State-Value Function Estimation
Fabian Otto, Philipp Becker, Ngo Anh Vien, Gerhard Neumann
Existing off-policy reinforcement learning algorithms often rely on an explicit state-action-value function representation, which can be problematic in high-dimensional action spaces due to the curse of dimensionality. This reliance results in data inefficiency as maintaining a state-action-value function in such spaces is challenging. We present an efficient approach that utilizes only a state-value function as the critic for off-policy deep reinforcement learning. This approach, which we refer to as Vlearn, effectively circumvents the limitations of existing methods by eliminating the necessity for an explicit state-action-value function. To this end, we introduce a novel importance sampling loss for learning deep value functions from off-policy data. While this is common for linear methods, it has not been combined with deep value function networks. This transfer to deep methods is not straightforward and requires novel design choices such as robust policy updates, twin value function networks to avoid an optimization bias, and importance weight clipping. We also present a novel analysis of the variance of our estimate compared to commonly used importance sampling estimators such as V-trace. Our approach improves sample complexity as well as final performance and ensures consistent and robust performance across various benchmark tasks. Eliminating the state-action-value function in Vlearn facilitates a streamlined learning process, enabling more effective exploration and exploitation in complex environments.
Submitted: Mar 7, 2024