Paper ID: 2403.07090

Time Series Analysis of Key Societal Events as Reflected in Complex Social Media Data Streams

Andy Skumanich, Han Kyul Kim

Social media platforms hold valuable insights, yet extracting essential information can be challenging. Traditional top-down approaches often struggle to capture critical signals in rapidly changing events. As global events evolve swiftly, social media narratives, including instances of disinformation, become significant sources of insights. To address the need for an inductive strategy, we explore a niche social media platform GAB and an established messaging service Telegram, to develop methodologies applicable on a broader scale. This study investigates narrative evolution on these platforms using quantitative corpus-based discourse analysis techniques. Our approach is a novel mode to study multiple social media domains to distil key information which may be obscured otherwise, allowing for useful and actionable insights. The paper details the technical and methodological aspects of gathering and preprocessing GAB and Telegram data for a keyness (Log Ratio) metric analysis, identifying crucial nouns and verbs for deeper exploration. Empirically, this approach is applied to a case study of a well defined event that had global impact: the 2023 Wagner mutiny. The main findings are: (1) the time line can be deconstructed to provide useful data features allowing for improved interpretation; (2) a methodology is applied which provides a basis for generalization. The key contribution is an approach, that in some cases, provides the ability to capture the dynamic narrative shifts over time with elevated confidence. The approach can augment near-real-time assessment of key social movements, allowing for informed governance choices. This research is important because it lays out a useful methodology for time series relevant info-culling, which can enable proactive modes for positive social engagement.

Submitted: Mar 11, 2024