Paper ID: 2403.08270
Identity-aware Dual-constraint Network for Cloth-Changing Person Re-identification
Peini Guo, Mengyuan Liu, Hong Liu, Ruijia Fan, Guoquan Wang, Bin He
Cloth-Changing Person Re-Identification (CC-ReID) aims to accurately identify the target person in more realistic surveillance scenarios, where pedestrians usually change their clothing. Despite great progress, limited cloth-changing training samples in existing CC-ReID datasets still prevent the model from adequately learning cloth-irrelevant features. In addition, due to the absence of explicit supervision to keep the model constantly focused on cloth-irrelevant areas, existing methods are still hampered by the disruption of clothing variations. To solve the above issues, we propose an Identity-aware Dual-constraint Network (IDNet) for the CC-ReID task. Specifically, to help the model extract cloth-irrelevant clues, we propose a Clothes Diversity Augmentation (CDA), which generates more realistic cloth-changing samples by enriching the clothing color while preserving the texture. In addition, a Multi-scale Constraint Block (MCB) is designed, which extracts fine-grained identity-related features and effectively transfers cloth-irrelevant knowledge. Moreover, a Counterfactual-guided Attention Module (CAM) is presented, which learns cloth-irrelevant features from channel and space dimensions and utilizes the counterfactual intervention for supervising the attention map to highlight identity-related regions. Finally, a Semantic Alignment Constraint (SAC) is designed to facilitate high-level semantic feature interaction. Comprehensive experiments on four CC-ReID datasets indicate that our method outperforms prior state-of-the-art approaches.
Submitted: Mar 13, 2024