Paper ID: 2403.09828

Analyzing Data Augmentation for Medical Images: A Case Study in Ultrasound Images

Adam Tupper, Christian Gagné

Data augmentation is one of the most effective techniques to improve the generalization performance of deep neural networks. Yet, despite often facing limited data availability in medical image analysis, it is frequently underutilized. This appears to be due to a gap in our collective understanding of the efficacy of different augmentation techniques across medical imaging tasks and modalities. One domain where this is especially true is breast ultrasound images. This work addresses this issue by analyzing the effectiveness of different augmentation techniques for the classification of breast lesions in ultrasound images. We assess the generalizability of our findings across several datasets, demonstrate that certain augmentations are far more effective than others, and show that their usage leads to significant performance gains.

Submitted: Mar 14, 2024