Paper ID: 2403.11087
Incorporating Higher-order Structural Information for Graph Clustering
Qiankun Li, Haobing Liu, Ruobing Jiang, Tingting Wang
Clustering holds profound significance in data mining. In recent years, graph convolutional network (GCN) has emerged as a powerful tool for deep clustering, integrating both graph structural information and node attributes. However, most existing methods ignore the higher-order structural information of the graph. Evidently, nodes within the same cluster can establish distant connections. Besides, recent deep clustering methods usually apply a self-supervised module to monitor the training process of their model, focusing solely on node attributes without paying attention to graph structure. In this paper, we propose a novel graph clustering network to make full use of graph structural information. To capture the higher-order structural information, we design a graph mutual infomax module, effectively maximizing mutual information between graph-level and node-level representations, and employ a trinary self-supervised module that includes modularity as a structural constraint. Our proposed model outperforms many state-of-the-art methods on various datasets, demonstrating its superiority.
Submitted: Mar 17, 2024