Paper ID: 2403.11898
VITaL Pretraining: Visuo-Tactile Pretraining for Tactile and Non-Tactile Manipulation Policies
Abraham George, Selam Gano, Pranav Katragadda, Amir Barati Farimani
Tactile information is a critical tool for dexterous manipulation. As humans, we rely heavily on tactile information to understand objects in our environments and how to interact with them. We use touch not only to perform manipulation tasks but also to learn how to perform these tasks. Therefore, to create robotic agents that can learn to complete manipulation tasks at a human or super-human level of performance, we need to properly incorporate tactile information into both skill execution and skill learning. In this paper, we investigate how we can incorporate tactile information into imitation learning platforms to improve performance on manipulation tasks. We show that incorporating visuo-tactile pretraining improves imitation learning performance, not only for tactile agents (policies that use tactile information at inference), but also for non-tactile agents (policies that do not use tactile information at inference). For these non-tactile agents, pretraining with tactile information significantly improved performance (for example, improving the accuracy on USB plugging from 20% to 85%), reaching a level on par with visuo-tactile agents, and even surpassing them in some cases. For demonstration videos and access to our codebase, see the project website: this https URL
Submitted: Mar 18, 2024