Paper ID: 2403.18252
Beyond Embeddings: The Promise of Visual Table in Visual Reasoning
Yiwu Zhong, Zi-Yuan Hu, Michael R. Lyu, Liwei Wang
Visual representation learning has been a cornerstone in computer vision, involving typical forms such as visual embeddings, structural symbols, and text-based representations. Despite the success of CLIP-type visual embeddings, they often lack access to world knowledge critical for visual reasoning. In this work, we propose Visual Table, a novel form of visual representation tailored for visual reasoning. Visual tables are constructed as hierarchical descriptions of visual scenes, featuring a scene description and multiple object-centric descriptions covering categories, attributes, and knowledge. Thanks to the structural and textual formats, visual tables offer unique advantages over mere visual embeddings, such as interpretability and controllable editing. Furthermore, they deliver instance-level world knowledge and detailed attributes that are essential for visual reasoning. To create visual tables, we develop a generator trained on the dataset with collected, small-scale annotations. Extensive results on 11 visual reasoning benchmarks demonstrate that the generated visual tables significantly outperform previous structural and text-based representations. Moreover, they consistently enhance state-of-the-art multimodal large language models across diverse benchmarks, showcasing their potential for advancing visual reasoning tasks. Our code is available at https://github.com/LaVi-Lab/Visual-Table.
Submitted: Mar 27, 2024