Paper ID: 2404.05083
HaVTR: Improving Video-Text Retrieval Through Augmentation Using Large Foundation Models
Yimu Wang, Shuai Yuan, Xiangru Jian, Wei Pang, Mushi Wang, Ning Yu
While recent progress in video-text retrieval has been driven by the exploration of powerful model architectures and training strategies, the representation learning ability of video-text retrieval models is still limited due to low-quality and scarce training data annotations. To address this issue, we present a novel video-text learning paradigm, HaVTR, which augments video and text data to learn more generalized features. Specifically, we first adopt a simple augmentation method, which generates self-similar data by randomly duplicating or dropping subwords and frames. In addition, inspired by the recent advancement in visual and language generative models, we propose a more powerful augmentation method through textual paraphrasing and video stylization using large language models (LLMs) and visual generative models (VGMs). Further, to bring richer information into video and text, we propose a hallucination-based augmentation method, where we use LLMs and VGMs to generate and add new relevant information to the original data. Benefiting from the enriched data, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of HaVTR over existing methods.
Submitted: Apr 7, 2024