Paper ID: 2404.06647

From Protoscience to Epistemic Monoculture: How Benchmarking Set the Stage for the Deep Learning Revolution

Bernard J. Koch, David Peterson

Over the past decade, AI research has focused heavily on building ever-larger deep learning models. This approach has simultaneously unlocked incredible achievements in science and technology, and hindered AI from overcoming long-standing limitations with respect to explainability, ethical harms, and environmental efficiency. Drawing on qualitative interviews and computational analyses, our three-part history of AI research traces the creation of this "epistemic monoculture" back to a radical reconceptualization of scientific progress that began in the late 1980s. In the first era of AI research (1950s-late 1980s), researchers and patrons approached AI as a "basic" science that would advance through autonomous exploration and organic assessments of progress (e.g., peer-review, theoretical consensus). The failure of this approach led to a retrenchment of funding in the 1980s. Amid this "AI Winter," an intervention by the U.S. government reoriented the field towards measurable progress on tasks of military and commercial interest. A new evaluation system called "benchmarking" provided an objective way to quantify progress on tasks by focusing exclusively on increasing predictive accuracy on example datasets. Distilling science down to verifiable metrics clarified the roles of scientists, allowed the field to rapidly integrate talent, and provided clear signals of significance and progress. But history has also revealed a tradeoff to this streamlined approach to science: the consolidation around external interests and inherent conservatism of benchmarking has disincentivized exploration beyond scaling monoculture. In the discussion, we explain how AI's monoculture offers a compelling challenge to the belief that basic, exploration-driven research is needed for scientific progress. Implications for the spread of AI monoculture to other sciences in the era of generative AI are also discussed.

Submitted: Apr 9, 2024