Paper ID: 2404.10317
LLMs4OM: Matching Ontologies with Large Language Models
Hamed Babaei Giglou, Jennifer D'Souza, Felix Engel, Sören Auer
Ontology Matching (OM), is a critical task in knowledge integration, where aligning heterogeneous ontologies facilitates data interoperability and knowledge sharing. Traditional OM systems often rely on expert knowledge or predictive models, with limited exploration of the potential of Large Language Models (LLMs). We present the LLMs4OM framework, a novel approach to evaluate the effectiveness of LLMs in OM tasks. This framework utilizes two modules for retrieval and matching, respectively, enhanced by zero-shot prompting across three ontology representations: concept, concept-parent, and concept-children. Through comprehensive evaluations using 20 OM datasets from various domains, we demonstrate that LLMs, under the LLMs4OM framework, can match and even surpass the performance of traditional OM systems, particularly in complex matching scenarios. Our results highlight the potential of LLMs to significantly contribute to the field of OM.
Submitted: Apr 16, 2024