Paper ID: 2404.13454
Revolutionizing System Reliability: The Role of AI in Predictive Maintenance Strategies
Michael Bidollahkhani, Julian M. Kunkel
The landscape of maintenance in distributed systems is rapidly evolving with the integration of Artificial Intelligence (AI). Also, as the complexity of computing continuum systems intensifies, the role of AI in predictive maintenance (Pd.M.) becomes increasingly pivotal. This paper presents a comprehensive survey of the current state of Pd.M. in the computing continuum, with a focus on the combination of scalable AI technologies. Recognizing the limitations of traditional maintenance practices in the face of increasingly complex and heterogenous computing continuum systems, the study explores how AI, especially machine learning and neural networks, is being used to enhance Pd.M. strategies. The survey encompasses a thorough review of existing literature, highlighting key advancements, methodologies, and case studies in the field. It critically examines the role of AI in improving prediction accuracy for system failures and in optimizing maintenance schedules, thereby contributing to reduced downtime and enhanced system longevity. By synthesizing findings from the latest advancements in the field, the article provides insights into the effectiveness and challenges of implementing AI-driven predictive maintenance. It underscores the evolution of maintenance practices in response to technological advancements and the growing complexity of computing continuum systems. The conclusions drawn from this survey are instrumental for practitioners and researchers in understanding the current landscape and future directions of Pd.M. in distributed systems. It emphasizes the need for continued research and development in this area, pointing towards a trend of more intelligent, efficient, and cost-effective maintenance solutions in the era of AI.
Submitted: Apr 20, 2024