Paper ID: 2404.13742
Seamless Underwater Navigation with Limited Doppler Velocity Log Measurements
Nadav Cohen, Itzik Klein
Autonomous Underwater Vehicles (AUVs) commonly utilize an inertial navigation system (INS) and a Doppler velocity log (DVL) for underwater navigation. To that end, their measurements are integrated through a nonlinear filter such as the extended Kalman filter (EKF). The DVL velocity vector estimate depends on retrieving reflections from the seabed, ensuring that at least three out of its four transmitted acoustic beams return successfully. When fewer than three beams are obtained, the DVL cannot provide a velocity update to bind the navigation solution drift. To cope with this challenge, in this paper, we propose a hybrid neural coupled (HNC) approach for seamless AUV navigation in situations of limited DVL measurements. First, we drive an approach to regress two or three missing DVL beams. Then, those beams, together with the measured beams, are incorporated into the EKF. We examined INS/DVL fusion both in loosely and tightly coupled approaches. Our method was trained and evaluated on recorded data from AUV experiments conducted in the Mediterranean Sea on two different occasions. The results illustrate that our proposed method outperforms the baseline loosely and tightly coupled model-based approaches by an average of 96.15%. It also demonstrates superior performance compared to a model-based beam estimator by an average of 12.41% in terms of velocity accuracy for scenarios involving two or three missing beams. Therefore, we demonstrate that our approach offers seamless AUV navigation in situations of limited beam measurements.
Submitted: Apr 21, 2024