Paper ID: 2404.19232

GRAMMAR: Grounded and Modular Methodology for Assessment of Closed-Domain Retrieval-Augmented Language Model

Xinzhe Li, Ming Liu, Shang Gao

Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs for evaluation. This method facilitates the separation of query logic from linguistic variations, enabling the testing of hypotheses related to non-robust textual forms; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities. For implementation details, refer to our GitHub repository: https://github.com/xinzhel/grammar.

Submitted: Apr 30, 2024