Paper ID: 2405.01778

Hierarchical mixture of discriminative Generalized Dirichlet classifiers

Elvis Togban, Djemel Ziou

This paper presents a discriminative classifier for compositional data. This classifier is based on the posterior distribution of the Generalized Dirichlet which is the discriminative counterpart of Generalized Dirichlet mixture model. Moreover, following the mixture of experts paradigm, we proposed a hierarchical mixture of this classifier. In order to learn the models parameters, we use a variational approximation by deriving an upper-bound for the Generalized Dirichlet mixture. To the best of our knownledge, this is the first time this bound is proposed in the literature. Experimental results are presented for spam detection and color space identification.

Submitted: May 2, 2024