Paper ID: 2405.04912

GP-MoLFormer: A Foundation Model For Molecular Generation

Jerret Ross, Brian Belgodere, Samuel C. Hoffman, Vijil Chenthamarakshan, Youssef Mroueh, Payel Das

Transformer-based models trained on large and general purpose datasets consisting of molecular strings have recently emerged as a powerful tool for successfully modeling various structure-property relations. Inspired by this success, we extend the paradigm of training chemical language transformers on large-scale chemical datasets to generative tasks in this work. Specifically, we propose GP-MoLFormer, an autoregressive molecular string generator that is trained on more than 1.1B chemical SMILES. GP-MoLFormer uses a 46.8M parameter transformer decoder model with linear attention and rotary positional encodings as the base architecture. We explore the utility of GP-MoLFormer in generating novel, valid, and unique SMILES. Impressively, we find GP-MoLFormer is able to generate a significant fraction of novel, valid, and unique SMILES even when the number of generated molecules is in the 10 billion range and the reference set is over a billion. We also find strong memorization of training data in GP-MoLFormer generations, which has so far remained unexplored for chemical language models. Our analyses reveal that training data memorization and novelty in generations are impacted by the quality of the training data; duplication bias in training data can enhance memorization at the cost of lowering novelty. We evaluate GP-MoLFormer's utility and compare it with that of existing baselines on three different tasks: de novo generation, scaffold-constrained molecular decoration, and unconstrained property-guided optimization. While the first two are handled with no additional training, we propose a parameter-efficient fine-tuning method for the last task, which uses property-ordered molecular pairs as input. We call this new approach pair-tuning. Our results show GP-MoLFormer performs better or comparable with baselines across all three tasks, demonstrating its general utility.

Submitted: Apr 4, 2024