Paper ID: 2405.11008

A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence

Tayab Uddin Wara, Ababil Hossain Fahad, Adri Shankar Das, Md. Mehedi Hasan Shawon

Sleep is vital for people's physical and mental health, and sound sleep can help them focus on daily activities. Therefore, a sleep study that includes sleep patterns and sleep disorders is crucial to enhancing our knowledge about individuals' health status. This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies, which includes works on "sleep stages classification" and "sleep disorder detection" using AI. In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023. Brain waves were the most commonly employed body parameters for sleep staging and disorder studies (almost 29% of the research used brain activity signals exclusively, and 77% combined with the other signals). The convolutional neural network (CNN), the most widely used of the 34 distinct artificial intelligence models, comprised 27%. The other models included the long short-term memory (LSTM), support vector machine (SVM), random forest (RF), and recurrent neural network (RNN), which consisted of 11%, 6%, 6%, and 5% sequentially. For performance metrics, accuracy was widely used for a maximum of 83.75% of the cases, the F1 score of 45%, Kappa of 36.25%, Sensitivity of 31.25%, and Specificity of 30% of cases, along with the other metrics. This article would help physicians and researchers get the gist of AI's contribution to sleep studies and the feasibility of their intended work.

Submitted: May 17, 2024