Paper ID: 2405.20445
GraphAny: A Foundation Model for Node Classification on Any Graph
Jianan Zhao, Hesham Mostafa, Mikhail Galkin, Michael Bronstein, Zhaocheng Zhu, Jian Tang
Foundation models that can perform inference on any new task without requiring specific training have revolutionized machine learning in vision and language applications. However, applications involving graph-structured data remain a tough nut for foundation models, due to challenges in the unique feature- and label spaces associated with each graph. Traditional graph ML models such as graph neural networks (GNNs) trained on graphs cannot perform inference on a new graph with feature and label spaces different from the training ones. Furthermore, existing models learn functions specific to the training graph and cannot generalize to new graphs. In this work, we tackle these two challenges with a new foundational architecture for inductive node classification named GraphAny. GraphAny models inference on a new graph as an analytical solution to a LinearGNN, thereby solving the first challenge. To solve the second challenge, we learn attention scores for each node to fuse the predictions of multiple LinearGNNs. Specifically, the attention module is carefully parameterized as a function of the entropy-normalized distance-features between multiple LinearGNNs predictions to ensure generalization to new graphs. Empirically, GraphAny trained on the Wisconsin dataset with only 120 labeled nodes can effectively generalize to 30 new graphs with an average accuracy of 67.26\% in an inductive manner, surpassing GCN and GAT trained in the supervised regime, as well as other inductive baselines.
Submitted: May 30, 2024