Paper ID: 2405.21016

MpoxSLDNet: A Novel CNN Model for Detecting Monkeypox Lesions and Performance Comparison with Pre-trained Models

Fatema Jannat Dihan, Saydul Akbar Murad, Abu Jafar Md Muzahid, K. M. Aslam Uddin, Mohammed J. F. Alenazi, Anupam Kumar Bairagi, Sujit Biswas

Monkeypox virus (MPXV) is a zoonotic virus that poses a significant threat to public health, particularly in remote parts of Central and West Africa. Early detection of monkeypox lesions is crucial for effective treatment. However, due to its similarity with other skin diseases, monkeypox lesion detection is a challenging task. To detect monkeypox, many researchers used various deep-learning models such as MobileNetv2, VGG16, ResNet50, InceptionV3, DenseNet121, EfficientNetB3, MobileNetV2, and Xception. However, these models often require high storage space due to their large size. This study aims to improve the existing challenges by introducing a CNN model named MpoxSLDNet (Monkeypox Skin Lesion Detector Network) to facilitate early detection and categorization of Monkeypox lesions and Non-Monkeypox lesions in digital images. Our model represents a significant advancement in the field of monkeypox lesion detection by offering superior performance metrics, including precision, recall, F1-score, accuracy, and AUC, compared to traditional pre-trained models such as VGG16, ResNet50, and DenseNet121. The key novelty of our approach lies in MpoxSLDNet's ability to achieve high detection accuracy while requiring significantly less storage space than existing models. By addressing the challenge of high storage requirements, MpoxSLDNet presents a practical solution for early detection and categorization of monkeypox lesions in resource-constrained healthcare settings. In this study, we have used "Monkeypox Skin Lesion Dataset" comprising 1428 skin images of monkeypox lesions and 1764 skin images of Non-Monkeypox lesions. Dataset's limitations could potentially impact the model's ability to generalize to unseen cases. However, the MpoxSLDNet model achieved a validation accuracy of 94.56%, compared to 86.25%, 84.38%, and 67.19% for VGG16, DenseNet121, and ResNet50, respectively.

Submitted: May 31, 2024