Paper ID: 2406.04470
DiffuSyn Bench: Evaluating Vision-Language Models on Real-World Complexities with Diffusion-Generated Synthetic Benchmarks
Haokun Zhou, Yipeng Hong
This study assesses the ability of Large Vision-Language Models (LVLMs) to differentiate between AI-generated and human-generated images. It introduces a new automated benchmark construction method for this evaluation. The experiment compared common LVLMs with human participants using a mixed dataset of AI and human-created images. Results showed that LVLMs could distinguish between the image types to some extent but exhibited a rightward bias, and perform significantly worse compared to humans. To build on these findings, we developed an automated benchmark construction process using AI. This process involved topic retrieval, narrative script generation, error embedding, and image generation, creating a diverse set of text-image pairs with intentional errors. We validated our method through constructing two caparable benchmarks. This study highlights the strengths and weaknesses of LVLMs in real-world understanding and advances benchmark construction techniques, providing a scalable and automatic approach for AI model evaluation.
Submitted: Jun 6, 2024