Paper ID: 2406.04993

Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study

David Benrimoh, Caitrin Armstrong, Joseph Mehltretter, Robert Fratila, Kelly Perlman, Sonia Israel, Adam Kapelner, Sagar V. Parikh, Jordan F. Karp, Katherine Heller, Gustavo Turecki

INTRODUCTION: The pharmacological treatment of Major Depressive Disorder (MDD) relies on a trial-and-error approach. We introduce an artificial intelligence (AI) model aiming to personalize treatment and improve outcomes, which was deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study. OBJECTIVES: 1) Develop a model capable of predicting probabilities of remission across multiple pharmacological treatments for adults with at least moderate major depression. 2) Validate model predictions and examine them for amplification of harmful biases. METHODS: Data from previous clinical trials of antidepressant medications were standardized into a common framework and included 9,042 adults with moderate to severe major depression. Feature selection retained 25 clinical and demographic variables. Using Bayesian optimization, a deep learning model was trained on the training set, refined using the validation set, and tested once on the held-out test set. RESULTS: In the evaluation on the held-out test set, the model demonstrated achieved an AUC of 0.65. The model outperformed a null model on the test set (p = 0.01). The model demonstrated clinical utility, achieving an absolute improvement in population remission rate in hypothetical and actual improvement testing. While the model did identify one drug (escitalopram) as generally outperforming the other drugs (consistent with the input data), there was otherwise significant variation in drug rankings. On bias testing, the model did not amplify potentially harmful biases. CONCLUSIONS: We demonstrate the first model capable of predicting outcomes for 10 different treatment options for patients with MDD, intended to be used at or near the start of treatment to personalize treatment. The model was put into clinical practice during the AIDME randomized controlled trial whose results are reported separately.

Submitted: Jun 7, 2024