Paper ID: 2406.11636

Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities

Felix Wagner, Wentian Xu, Pramit Saha, Ziyun Liang, Daniel Whitehouse, David Menon, Virginia Newcombe, Natalie Voets, J. Alison Noble, Konstantinos Kamnitsas

Segmentation models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities. Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease. Moreover, this training paradigm does not allow a model to benefit from learning from heterogeneous databases that may contain scans and segmentation labels for different types of brain pathologies and diverse sets of MRI modalities. Additionally, the sensitivity of patient data often prevents centrally aggregating data, necessitating a decentralized approach. Is it feasible to use Federated Learning (FL) to train a single model on client databases that contain scans and labels of different brain pathologies and diverse sets of MRI modalities? We demonstrate promising results by combining appropriate, simple, and practical modifications to the model and training strategy: Designing a model with input channels that cover the whole set of modalities available across clients, training with random modality drop, and exploring the effects of feature normalization methods. Evaluation on 7 brain MRI databases with 5 different diseases shows that such FL framework can train a single model that is shown to be very promising in segmenting all disease types seen during training. Importantly, it is able to segment these diseases in new databases that contain sets of modalities different from those in training clients. These results demonstrate, for the first time, the feasibility and effectiveness of using Federated Learning to train a single 3D segmentation model on decentralised data with diverse brain diseases and MRI modalities, a necessary step towards leveraging heterogeneous real-world databases. Code will be made available at: https://github.com/FelixWag/FL-MultiDisease-MRI

Submitted: Jun 17, 2024