Paper ID: 2406.16307
Artistic-style text detector and a new Movie-Poster dataset
Aoxiang Ning, Yiting Wei, Minglong Xue, Senming Zhong
Although current text detection algorithms demonstrate effectiveness in general scenarios, their performance declines when confronted with artistic-style text featuring complex structures. This paper proposes a method that utilizes Criss-Cross Attention and residual dense block to address the incomplete and misdiagnosis of artistic-style text detection by current algorithms. Specifically, our method mainly consists of a feature extraction backbone, a feature enhancement network, a multi-scale feature fusion module, and a boundary discrimination module. The feature enhancement network significantly enhances the model's perceptual capabilities in complex environments by fusing horizontal and vertical contextual information, allowing it to capture detailed features overlooked in artistic-style text. We incorporate residual dense block into the Feature Pyramid Network to suppress the effect of background noise during feature fusion. Aiming to omit the complex post-processing, we explore a boundary discrimination module that guides the correct generation of boundary proposals. Furthermore, given that movie poster titles often use stylized art fonts, we collected a Movie-Poster dataset to address the scarcity of artistic-style text data. Extensive experiments demonstrate that our proposed method performs superiorly on the Movie-Poster dataset and produces excellent results on multiple benchmark datasets. The code and the Movie-Poster dataset will be available at: https://github.com/biedaxiaohua/Artistic-style-text-detection
Submitted: Jun 24, 2024