Paper ID: 2407.04258

Unsupervised Video Summarization via Reinforcement Learning and a Trained Evaluator

Mehryar Abbasi, Hadi Hadizadeh, Parvaneh Saeedi

This paper presents a novel approach for unsupervised video summarization using reinforcement learning. It aims to address the existing limitations of current unsupervised methods, including unstable training of adversarial generator-discriminator architectures and reliance on hand-crafted reward functions for quality evaluation. The proposed method is based on the concept that a concise and informative summary should result in a reconstructed video that closely resembles the original. The summarizer model assigns an importance score to each frame and generates a video summary. In the proposed scheme, reinforcement learning, coupled with a unique reward generation pipeline, is employed to train the summarizer model. The reward generation pipeline trains the summarizer to create summaries that lead to improved reconstructions. It comprises a generator model capable of reconstructing masked frames from a partially masked video, along with a reward mechanism that compares the reconstructed video from the summary against the original. The video generator is trained in a self-supervised manner to reconstruct randomly masked frames, enhancing its ability to generate accurate summaries. This training pipeline results in a summarizer model that better mimics human-generated video summaries compared to methods relying on hand-crafted rewards. The training process consists of two stable and isolated training steps, unlike adversarial architectures. Experimental results demonstrate promising performance, with F-scores of 62.3 and 54.5 on TVSum and SumMe datasets, respectively. Additionally, the inference stage is 300 times faster than our previously reported state-of-the-art method.

Submitted: Jul 5, 2024