Paper ID: 2407.06939
Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge
Sriram Yenamandra, Arun Ramachandran, Mukul Khanna, Karmesh Yadav, Jay Vakil, Andrew Melnik, Michael Büttner, Leon Harz, Lyon Brown, Gora Chand Nandi, Arjun PS, Gaurav Kumar Yadav, Rahul Kala, Robert Haschke, Yang Luo, Jinxin Zhu, Yansen Han, Bingyi Lu, Xuan Gu, Qinyuan Liu, Yaping Zhao, Qiting Ye, Chenxiao Dou, Yansong Chua, Volodymyr Kuzma, Vladyslav Humennyy, Ruslan Partsey, Jonathan Francis, Devendra Singh Chaplot, Gunjan Chhablani, Alexander Clegg, Theophile Gervet, Vidhi Jain, Ram Ramrakhya, Andrew Szot, Austin Wang, Tsung-Yen Yang, Aaron Edsinger, Charlie Kemp, Binit Shah, Zsolt Kira, Dhruv Batra, Roozbeh Mottaghi, Yonatan Bisk, Chris Paxton
In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.
Submitted: Jul 9, 2024