Paper ID: 2407.07780

Cross Domain Object Detection via Multi-Granularity Confidence Alignment based Mean Teacher

Jiangming Chen, Li Liu, Wanxia Deng, Zhen Liu, Yu Liu, Yingmei Wei, Yongxiang Liu

Cross domain object detection learns an object detector for an unlabeled target domain by transferring knowledge from an annotated source domain. Promising results have been achieved via Mean Teacher, however, pseudo labeling which is the bottleneck of mutual learning remains to be further explored. In this study, we find that confidence misalignment of the predictions, including category-level overconfidence, instance-level task confidence inconsistency, and image-level confidence misfocusing, leading to the injection of noisy pseudo label in the training process, will bring suboptimal performance on the target domain. To tackle this issue, we present a novel general framework termed Multi-Granularity Confidence Alignment Mean Teacher (MGCAMT) for cross domain object detection, which alleviates confidence misalignment across category-, instance-, and image-levels simultaneously to obtain high quality pseudo supervision for better teacher-student learning. Specifically, to align confidence with accuracy at category level, we propose Classification Confidence Alignment (CCA) to model category uncertainty based on Evidential Deep Learning (EDL) and filter out the category incorrect labels via an uncertainty-aware selection strategy. Furthermore, to mitigate the instance-level misalignment between classification and localization, we design Task Confidence Alignment (TCA) to enhance the interaction between the two task branches and allow each classification feature to adaptively locate the optimal feature for the regression. Finally, we develop imagery Focusing Confidence Alignment (FCA) adopting another way of pseudo label learning, i.e., we use the original outputs from the Mean Teacher network for supervised learning without label assignment to concentrate on holistic information in the target image. These three procedures benefit from each other from a cooperative learning perspective.

Submitted: Jul 10, 2024