Paper ID: 2407.08149
Deep Polarization Cues for Single-shot Shape and Subsurface Scattering Estimation
Chenhao Li, Trung Thanh Ngo, Hajime Nagahara
In this work, we propose a novel learning-based method to jointly estimate the shape and subsurface scattering (SSS) parameters of translucent objects by utilizing polarization cues. Although polarization cues have been used in various applications, such as shape from polarization (SfP), BRDF estimation, and reflection removal, their application in SSS estimation has not yet been explored. Our observations indicate that the SSS affects not only the light intensity but also the polarization signal. Hence, the polarization signal can provide additional cues for SSS estimation. We also introduce the first large-scale synthetic dataset of polarized translucent objects for training our model. Our method outperforms several baselines from the SfP and inverse rendering realms on both synthetic and real data, as demonstrated by qualitative and quantitative results.
Submitted: Jul 11, 2024