Paper ID: 2407.08639
$β$-DPO: Direct Preference Optimization with Dynamic $β$
Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang, Xiangnan He
Direct Preference Optimization (DPO) has emerged as a compelling approach for training Large Language Models (LLMs) to adhere to human preferences. However, the performance of DPO is sensitive to the fine-tuning of its trade-off parameter $\beta$, as well as to the quality of the preference data. We analyze the impact of $\beta$ and data quality on DPO, uncovering that optimal $\beta$ values vary with the informativeness of pairwise data. Addressing the limitations of static $\beta$ values, we introduce a novel framework that dynamically calibrates $\beta$ at the batch level, informed by data quality considerations. Additionally, our method incorporates $\beta$-guided data filtering to safeguard against the influence of outliers. Through empirical evaluation, we demonstrate that our dynamic $\beta$ adjustment technique significantly improves DPO's performance across a range of models and datasets, offering a more robust and adaptable training paradigm for aligning LLMs with human feedback. The code is available at \url{this https URL}.
Submitted: Jul 11, 2024