Paper ID: 2407.10406

Towards Scale-Aware Full Surround Monodepth with Transformers

Yuchen Yang, Xinyi Wang, Dong Li, Lu Tian, Ashish Sirasao, Xun Yang

Full surround monodepth (FSM) methods can learn from multiple camera views simultaneously in a self-supervised manner to predict the scale-aware depth, which is more practical for real-world applications in contrast to scale-ambiguous depth from a standalone monocular camera. In this work, we focus on enhancing the scale-awareness of FSM methods for depth estimation. To this end, we propose to improve FSM from two perspectives: depth network structure optimization and training pipeline optimization. First, we construct a transformer-based depth network with neighbor-enhanced cross-view attention (NCA). The cross-attention modules can better aggregate the cross-view context in both global and neighboring views. Second, we formulate a transformer-based feature matching scheme with progressive training to improve the structure-from-motion (SfM) pipeline. That allows us to learn scale-awareness with sufficient matches and further facilitate network convergence by removing mismatches based on SfM loss. Experiments demonstrate that the resulting Scale-aware full surround monodepth (SA-FSM) method largely improves the scale-aware depth predictions without median-scaling at the test time, and performs favorably against the state-of-the-art FSM methods, e.g., surpassing SurroundDepth by 3.8% in terms of accuracy at delta<1.25 on the DDAD benchmark.

Submitted: Jul 15, 2024