Paper ID: 2408.09075

Improving Rare Word Translation With Dictionaries and Attention Masking

Kenneth J. Sible, David Chiang

In machine translation, rare words continue to be a problem for the dominant encoder-decoder architecture, especially in low-resource and out-of-domain translation settings. Human translators solve this problem with monolingual or bilingual dictionaries. In this paper, we propose appending definitions from a bilingual dictionary to source sentences and using attention masking to link together rare words with their definitions. We find that including definitions for rare words improves performance by up to 1.0 BLEU and 1.6 MacroF1.

Submitted: Aug 17, 2024