Paper ID: 2408.10783
Multi-agent based modeling for investigating excess heat utilization from electrolyzer production to district heating network
Kristoffer Christensen, Bo Nørregaard Jørgensen, Zheng Grace Ma
Power-to-Hydrogen is crucial for the renewable energy transition, yet existing literature lacks business models for the significant excess heat it generates. This study addresses this by evaluating three models for selling electrolyzer-generated heat to district heating grids: constant, flexible, and renewable-source hydrogen production, with and without heat sales. Using agent-based modeling and multi-criteria decision-making methods (VIKOR, TOPSIS, PROMETHEE), it finds that selling excess heat can cut hydrogen production costs by 5.6%. The optimal model operates flexibly with electricity spot prices, includes heat sales, and maintains a hydrogen price of 3.3 EUR/kg. Environmentally, hydrogen production from grid electricity could emit up to 13,783.8 tons of CO2 over four years from 2023. The best economic and environmental model uses renewable sources and sells heat at 3.5 EUR/kg
Submitted: Aug 20, 2024