Paper ID: 2408.14812

HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling

Yubin Wang, Xinyang Jiang, De Cheng, Wenli Sun, Dongsheng Li, Cairong Zhao

Prompt learning has become a prevalent strategy for adapting vision-language foundation models (VLMs) such as CLIP to downstream tasks. With the emergence of large language models (LLMs), recent studies have explored the potential of using category-related descriptions to enhance prompt effectiveness. However, conventional descriptions lack explicit structured information necessary to represent the interconnections among key elements like entities or attributes with relation to a particular category. Since existing prompt tuning methods give little consideration to managing structured knowledge, this paper advocates leveraging LLMs to construct a graph for each description to prioritize such structured knowledge. Consequently, we propose a novel approach called Hierarchical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning. In addition, by incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships. Finally, by enhancing multi-granularity knowledge generation, redesigning the relationship-driven attention re-weighting module, and incorporating consistent constraints on the hierarchical text encoder, we propose HPT++, which further improves the performance of HPT. Our experiments are conducted across a wide range of evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization. Extensive results and ablation studies demonstrate the effectiveness of our methods, which consistently outperform existing SOTA methods.

Submitted: Aug 27, 2024