Paper ID: 2409.02111
Toward Large-scale Spiking Neural Networks: A Comprehensive Survey and Future Directions
Yangfan Hu, Qian Zheng, Guoqi Li, Huajin Tang, Gang Pan
Deep learning has revolutionized artificial intelligence (AI), achieving remarkable progress in fields such as computer vision, speech recognition, and natural language processing. Moreover, the recent success of large language models (LLMs) has fueled a surge in research on large-scale neural networks. However, the escalating demand for computing resources and energy consumption has prompted the search for energy-efficient alternatives. Inspired by the human brain, spiking neural networks (SNNs) promise energy-efficient computation with event-driven spikes. To provide future directions toward building energy-efficient large SNN models, we present a survey of existing methods for developing deep spiking neural networks, with a focus on emerging Spiking Transformers. Our main contributions are as follows: (1) an overview of learning methods for deep spiking neural networks, categorized by ANN-to-SNN conversion and direct training with surrogate gradients; (2) an overview of network architectures for deep spiking neural networks, categorized by deep convolutional neural networks (DCNNs) and Transformer architecture; and (3) a comprehensive comparison of state-of-the-art deep SNNs with a focus on emerging Spiking Transformers. We then further discuss and outline future directions toward large-scale SNNs.
Submitted: Aug 19, 2024