Paper ID: 2409.02224
EgoPressure: A Dataset for Hand Pressure and Pose Estimation in Egocentric Vision
Yiming Zhao, Taein Kwon, Paul Streli, Marc Pollefeys, Christian Holz
Estimating touch contact and pressure in egocentric vision is a central task for downstream applications in Augmented Reality, Virtual Reality, as well as many robotic applications, because it provides precise physical insights into hand-object interaction and object manipulation. However, existing contact pressure datasets lack egocentric views and hand poses, which are essential for accurate estimation during in-situ operation, both for AR/VR interaction and robotic manipulation. In this paper, we introduce EgoPressure,a novel dataset of touch contact and pressure interaction from an egocentric perspective, complemented with hand pose meshes and fine-grained pressure intensities for each contact. The hand poses in our dataset are optimized using our proposed multi-view sequence-based method that processes footage from our capture rig of 8 accurately calibrated RGBD cameras. EgoPressure comprises 5.0 hours of touch contact and pressure interaction from 21 participants captured by a moving egocentric camera and 7 stationary Kinect cameras, which provided RGB images and depth maps at 30 Hz. In addition, we provide baselines for estimating pressure with different modalities, which will enable future developments and benchmarking on the dataset. Overall, we demonstrate that pressure and hand poses are complementary, which supports our intention to better facilitate the physical understanding of hand-object interactions in AR/VR and robotics research.
Submitted: Sep 3, 2024