Paper ID: 2409.05142
TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs
Horatiu Florea, Sergiu Nedevschi
Aerial scene understanding systems face stringent payload restrictions and must often rely on monocular depth estimation for modelling scene geometry, which is an inherently ill-posed problem. Moreover, obtaining accurate ground truth data required by learning-based methods raises significant additional challenges in the aerial domain. Self-supervised approaches can bypass this problem, at the cost of providing only up-to-scale results. Similarly, recent supervised solutions which make good progress towards zero-shot generalization also provide only relative depth values. This work presents TanDepth, a practical, online scale recovery method for obtaining metric depth results from relative estimations at inference-time, irrespective of the type of model generating them. Tailored for Unmanned Aerial Vehicle (UAV) applications, our method leverages sparse measurements from Global Digital Elevation Models (GDEM) by projecting them to the camera view using extrinsic and intrinsic information. An adaptation to the Cloth Simulation Filter is presented, which allows selecting ground points from the estimated depth map to then correlate with the projected reference points. We evaluate and compare our method against alternate scaling methods adapted for UAVs, on a variety of real-world scenes. Considering the limited availability of data for this domain, we construct and release a comprehensive, depth-focused extension to the popular UAVid dataset to further research.
Submitted: Sep 8, 2024