Paper ID: 2409.09040

ChatSUMO: Large Language Model for Automating Traffic Scenario Generation in Simulation of Urban MObility

Shuyang Li, Talha Azfar, Ruimin Ke

Large Language Models (LLMs), capable of handling multi-modal input and outputs such as text, voice, images, and video, are transforming the way we process information. Beyond just generating textual responses to prompts, they can integrate with different software platforms to offer comprehensive solutions across diverse applications. In this paper, we present ChatSUMO, a LLM-based agent that integrates language processing skills to generate abstract and real-world simulation scenarios in the widely-used traffic simulator - Simulation of Urban MObility (SUMO). Our methodology begins by leveraging the LLM for user input which converts to relevant keywords needed to run python scripts. These scripts are designed to convert specified regions into coordinates, fetch data from OpenStreetMap, transform it into a road network, and subsequently run SUMO simulations with the designated traffic conditions. The outputs of the simulations are then interpreted by the LLM resulting in informative comparisons and summaries. Users can continue the interaction and generate a variety of customized scenarios without prior traffic simulation expertise. For simulation generation, we created a real-world simulation for the city of Albany with an accuracy of 96\%. ChatSUMO also realizes the customizing of edge edit, traffic light optimization, and vehicle edit by users effectively.

Submitted: Aug 29, 2024