Paper ID: 2409.09989

Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system

Shailja Gupta, Rajesh Ranjan, Surya Narayan Singh

This paper provides a comprehensive survey of sentiment analysis within the context of artificial intelligence (AI) and large language models (LLMs). Sentiment analysis, a critical aspect of natural language processing (NLP), has evolved significantly from traditional rule-based methods to advanced deep learning techniques. This study examines the historical development of sentiment analysis, highlighting the transition from lexicon-based and pattern-based approaches to more sophisticated machine learning and deep learning models. Key challenges are discussed, including handling bilingual texts, detecting sarcasm, and addressing biases. The paper reviews state-of-the-art approaches, identifies emerging trends, and outlines future research directions to advance the field. By synthesizing current methodologies and exploring future opportunities, this survey aims to understand sentiment analysis in the AI and LLM context thoroughly.

Submitted: Sep 16, 2024