Paper ID: 2409.11489
Beyond Algorithmic Fairness: A Guide to Develop and Deploy Ethical AI-Enabled Decision-Support Tools
Rosemarie Santa Gonzalez, Ryan Piansky, Sue M Bae, Justin Biddle, Daniel Molzahn
The integration of artificial intelligence (AI) and optimization hold substantial promise for improving the efficiency, reliability, and resilience of engineered systems. Due to the networked nature of many engineered systems, ethically deploying methodologies at this intersection poses challenges that are distinct from other AI settings, thus motivating the development of ethical guidelines tailored to AI-enabled optimization. This paper highlights the need to go beyond fairness-driven algorithms to systematically address ethical decisions spanning the stages of modeling, data curation, results analysis, and implementation of optimization-based decision support tools. Accordingly, this paper identifies ethical considerations required when deploying algorithms at the intersection of AI and optimization via case studies in power systems as well as supply chain and logistics. Rather than providing a prescriptive set of rules, this paper aims to foster reflection and awareness among researchers and encourage consideration of ethical implications at every step of the decision-making process.
Submitted: Sep 17, 2024