Paper ID: 2409.13228 • Published Sep 20, 2024
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators
Fabian Baumeister, Lukas Mack, Joerg Stueckler
TL;DR
Get AI-generated summaries with premium
Get AI-generated summaries with premium
Few-shot adaptation is an important capability for intelligent robots that
perform tasks in open-world settings such as everyday environments or flexible
production. In this paper, we propose a novel approach for non-prehensile
manipulation which incrementally adapts a physics-based dynamics model for
model-predictive control (MPC). The model prediction is aligned with a few
examples of robot-object interactions collected with the MPC. This is achieved
by using a parallelizable rigid-body physics simulation as dynamic world model
and sampling-based optimization of the model parameters. In turn, the optimized
dynamics model can be used for MPC using efficient sampling-based optimization.
We evaluate our few-shot adaptation approach in object pushing experiments in
simulation and with a real robot.