Paper ID: 2409.13388

Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments

Weian Guo, Wuzhao Li, Zhiou Zhang, Lun Zhang, Li Li, Dongyang Li

Intelligent traffic signal control is essential to modern urban management, with important impacts on economic efficiency, environmental sustainability, and quality of daily life. However, in current decades, it continues to pose significant challenges in managing large-scale traffic networks, coordinating intersections, and ensuring robustness under uncertain traffic conditions. This paper presents a scalable multi-objective optimization approach for robust traffic signal control in dynamic and uncertain urban environments. A multi-objective optimization model is proposed in this paper, which incorporates stochastic variables and probabilistic traffic patterns to capture traffic flow dynamics and uncertainty. We propose an algorithm named Adaptive Hybrid Multi-Objective Optimization Algorithm (AHMOA), which addresses the uncertainties of city traffic, including network-wide signal coordination, fluctuating patterns, and environmental impacts. AHMOA simultaneously optimizes multiple objectives, such as average delay, network stability, and system robustness, while adapting to unpredictable changes in traffic. The algorithm combines evolutionary strategies with an adaptive mechanism to balance exploration and exploitation, and incorporates a memory-based evaluation mechanism to leverage historical traffic data. Simulations are conducted in different cities including Manhattan, Paris, Sao Paulo, and Istanbul. The experimental results demonstrate that AHMOA consistently outperforms several state-of-the-art algorithms and the algorithm is competent to provide scalable, robust Pareto optimal solutions for managing complex traffic systems under uncertain environments.

Submitted: Sep 20, 2024