Paper ID: 2409.13783
A Value Based Parallel Update MCTS Method for Multi-Agent Cooperative Decision Making of Connected and Automated Vehicles
Ye Han, Lijun Zhang, Dejian Meng, Xingyu Hu, Songyu Weng
To solve the problem of lateral and logitudinal joint decision-making of multi-vehicle cooperative driving for connected and automated vehicles (CAVs), this paper proposes a Monte Carlo tree search (MCTS) method with parallel update for multi-agent Markov game with limited horizon and time discounted setting. By analyzing the parallel actions in the multi-vehicle joint action space in the partial-steady-state traffic flow, the parallel update method can quickly exclude potential dangerous actions, thereby increasing the search depth without sacrificing the search breadth. The proposed method is tested in a large number of randomly generated traffic flow. The experiment results show that the algorithm has good robustness and better performance than the SOTA reinforcement learning algorithms and heuristic methods. The vehicle driving strategy using the proposed algorithm shows rationality beyond human drivers, and has advantages in traffic efficiency and safety in the coordinating zone.
Submitted: Sep 20, 2024