Paper ID: 2409.15521

CANDERE-COACH: Reinforcement Learning from Noisy Feedback

Yuxuan Li, Srijita Das, Matthew E. Taylor

In recent times, Reinforcement learning (RL) has been widely applied to many challenging tasks. However, in order to perform well, it requires access to a good reward function which is often sparse or manually engineered with scope for error. Introducing human prior knowledge is often seen as a possible solution to the above-mentioned problem, such as imitation learning, learning from preference, and inverse reinforcement learning. Learning from feedback is another framework that enables an RL agent to learn from binary evaluative signals describing the teacher's (positive or negative) evaluation of the agent's action. However, these methods often make the assumption that evaluative teacher feedback is perfect, which is a restrictive assumption. In practice, such feedback can be noisy due to limited teacher expertise or other exacerbating factors like cognitive load, availability, distraction, etc. In this work, we propose the CANDERE-COACH algorithm, which is capable of learning from noisy feedback by a nonoptimal teacher. We propose a noise-filtering mechanism to de-noise online feedback data, thereby enabling the RL agent to successfully learn with up to 40% of the teacher feedback being incorrect. Experiments on three common domains demonstrate the effectiveness of the proposed approach.

Submitted: Sep 23, 2024