Paper ID: 2409.17815
DREAMS: A python framework to train deep learning models with model card reporting for medical and health applications
Rabindra Khadka, Pedro G Lind, Anis Yazidi, Asma Belhadi
Electroencephalography (EEG) data provides a non-invasive method for researchers and clinicians to observe brain activity in real time. The integration of deep learning techniques with EEG data has significantly improved the ability to identify meaningful patterns, leading to valuable insights for both clinical and research purposes. However, most of the frameworks so far, designed for EEG data analysis, are either too focused on pre-processing or in deep learning methods per, making their use for both clinician and developer communities problematic. Moreover, critical issues such as ethical considerations, biases, uncertainties, and the limitations inherent in AI models for EEG data analysis are frequently overlooked, posing challenges to the responsible implementation of these technologies. In this paper, we introduce a comprehensive deep learning framework tailored for EEG data processing, model training and report generation. While constructed in way to be adapted and developed further by AI developers, it enables to report, through model cards, the outcome and specific information of use for both developers and clinicians. In this way, we discuss how this framework can, in the future, provide clinical researchers and developers with the tools needed to create transparent and accountable AI models for EEG data analysis and diagnosis.
Submitted: Sep 26, 2024