Paper ID: 2409.18345

A Generalized LLM-Augmented BIM Framework: Application to a Speech-to-BIM system

Ghang Lee, Suhyung Jang, Seokho Hyun

Performing building information modeling (BIM) tasks is a complex process that imposes a steep learning curve and a heavy cognitive load due to the necessity of remembering sequences of numerous commands. With the rapid advancement of large language models (LLMs), it is foreseeable that BIM tasks, including querying and managing BIM data, 4D and 5D BIM, design compliance checking, or authoring a design, using written or spoken natural language (i.e., text-to-BIM or speech-to-BIM), will soon supplant traditional graphical user interfaces. This paper proposes a generalized LLM-augmented BIM framework to expedite the development of LLM-enhanced BIM applications by providing a step-by-step development process. The proposed framework consists of six steps: interpret-fill-match-structure-execute-check. The paper demonstrates the applicability of the proposed framework through implementing a speech-to-BIM application, NADIA-S (Natural-language-based Architectural Detailing through Interaction with Artificial Intelligence via Speech), using exterior wall detailing as an example.

Submitted: Sep 26, 2024