Paper ID: 2410.00643

Cross-Camera Data Association via GNN for Supervised Graph Clustering

Đorđe Nedeljković

Cross-camera data association is one of the cornerstones of the multi-camera computer vision field. Although often integrated into detection and tracking tasks through architecture design and loss definition, it is also recognized as an independent challenge. The ultimate goal is to connect appearances of one item from all cameras, wherever it is visible. Therefore, one possible perspective on this task involves supervised clustering of the affinity graph, where nodes are instances captured by all cameras. They are represented by appropriate visual features and positional attributes. We leverage the advantages of GNN (Graph Neural Network) architecture to examine nodes' relations and generate representative edge embeddings. These embeddings are then classified to determine the existence or non-existence of connections in node pairs. Therefore, the core of this approach is graph connectivity prediction. Experimental validation was conducted on multicamera pedestrian datasets across diverse environments such as the laboratory, basketball court, and terrace. Our proposed method, named SGC-CCA, outperformed the state-of-the-art method named GNN-CCA across all clustering metrics, offering an end-to-end clustering solution without the need for graph post-processing. The code is available at this https URL.

Submitted: Oct 1, 2024